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Symbolic analysis of generalized synchronization of chaos
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An approach that uses symbolic analysis is presented for testing generalized synchronization. Generalized
synchronization appears when conditional entropy has a sharp minimum. In order to demonstrate how this
method works we applied it to the cases of Ro¨ssler and Lorenz systems. Our results appear to be robust when
external noise is added.@S1063-651X~97!10811-X#
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Cooperation behavior of chaotic dynamical systems a
in particular, synchronization phenomena have recei
much attention recently. It would seem to play an import
role in the ability of complex nonlinear oscillators, such
neurons, to act cooperatively in the performance of vari
functions. Nevertheless, the notion of synchronization its
lacks a unique interpretation@4#. Generally, synchronization
of chaos is understood as a regime in which two coup
chaotic systems exhibit identical, but still chaotic, oscil
tions @1#. Recently, the concept of synchronization has be
extended to two cases. One is called generalized synch
zation of chaos@2,3# where the driving and response syste
are different. It equates dynamical variables from one s
system with a function of the variables of another subsys
and exists in directionally coupled chaotic systems. T
other is called phase synchronization@4–6# where the sys-
tems flow synchronizing in the phase but with different siz
and/or positions. There is a both-way coupling in phase s
chronization. In this paper, we call these two cases gene
ized synchronization. Using the method of symbolic ana
sis, we show that the conditional entropy has a sh
minimum with the shift of time parametern0 when the gen-
eralized synchronization is implemented. It means that we
not need to determine a complicated generalized synchr
zation relationship and the appearance of the sharp minim
can be used as a criterion of generalized synchronizat
The advantages of our method are that it does not requir
auxiliary system@3# and it works well in all kinds of syn-
chronization.

Consider two systems

ẋ5 f ~x,ay!, ẏ5g~y,bx!, ~1!

wherex andy denote two systems, respectively, anda and
b represent the coupling interaction. If there are some r
tions between functionals of two processes due to inte
tion, we say that there is a generalized synchronization
tween the two systems of Eq.~1!. Take two time series from
Eq. ~1!,
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xi~n!5xi~ t01nt!, yj~n!5yj~ t01nt!. ~2!

Here xi denotes thei th variable of vectorx and yj the j th
variable of vectory, n50,1,2, . . . . In thecomputations be-
low we chooset51. In order to find the relation betwee
time seriesxi(n) and yj (n) in complex dynamical process
we need to use some coarse representation. That is, on
to substitute actual signalsxi(n),yj (n) with their symbolic
representation. Recently, Ref.@7# gave a symbolic analysis
of different chaotic signals in a same system, for examp
the time records ofx(t) and z(t) generated by the Loren
model. However, the approach of locating the critical poi
in Ref. @7# is very complex. In this paper, we will give
simple approach to determine the critical point. And our
sults show that it is useful in explaining generalized synch
nization.

In studing the symbolic dynamics of systems described
differential equations, we have given a useful method@8# to
determine the Poincare´ section. Its idea is as follows. Testin
the phase portrait of the chaotic attractor, one can fin
plane where all the interesting trajectories intersect it. T

FIG. 1. Phase portrait of Lorenz system when the coupl
strengthg510.
7297 © 1997 The American Physical Society
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FIG. 2. The conditional entropyE(zuz8) wherezc50.05. ~a! g50, zc8545.0; ~b! g53, zc8545.0; ~c! g54.9, zc8544.6; ~d! g510,
zc8544.3.
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plane usually contains an unstable fixed point. Taking t
plane as Poincare´ section, the points on the plane will dem
onstrate some behavior of the cubic map. Hence the s
bolic dynamics can be set up according to the map. Here
use this plane as a partition plane and give some symbolSi to
represent the time series of Eq.~2!. We find that this partition
plane will let the entropy of the system approach maximu
The value ofSi is one when the time series of Eq.~2! is
above the partition plane and zero when below the parti
plane. The resulting long symbolic series we partition in
short sequences of a given lengthL (L55 in the example
below!, and identify every short sequence uniquely by ju
one integer@9,10#

l 5(
i 51

L

2L2 iSi . ~3!

The sequencesl can be used for symbolic coarse graining
the phase space of the dynamical system. Now we repre
the time seriesxi(n) andyj (n) as symbolic statesl x(n) and
l y(n). If there is no relation betweenxi(n) and yj (n), the
evolution of l x(n) and l y(n) states is not correlated. On th
other hand, if there is generalized synchronization betw
xi(n) andyj (n), we will observe some relationship betwee
l x(n) and l y(n). We can easily destroy such a correlation
time shifting: l x(n),l y(n1n0). To confirm this effect we
compute the conditional entropy@7#
is
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Nl
(
l x

1

L(
l yu l x

P„l y~n1n0!u l x~n!…

3 lnP„l y~n1n0!u l x~n!…, ~4!

whereP( l yu l x) is a conditional probability for the variableyj
to occupy statel y while the variablexi occupies statel x , Nl
is the total number of differentl x sequences; the first sum
mation in Eq.~4! is done over all dynamically accessiblel y
states and fixedl x states.

As an application, we first consider two different system
The drive system is the Ro¨ssler model,

ẋ~ t !52@y~ t !1z~ t !#, ẏ~ t !5x~ t !10.2y~ t !,

ż~ t !50.21z~ t !@x~ t !2u#, ~5!

and the response system is the Lorenz model,

ẋ8~ t !5s@y8~ t !2x8~ t !#2g@x8~ t !2x~ t !#,

ẏ8~ t !52x8~ t !z8~ t !1rx8~ t !2y8~ t !,

ż8~ t !5x8~ t !y8~ t !2bz8~ t !, ~6!
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where u55.7, s516, b54, and r 545.92. The respons
system is coupled to the drive system only through the sc
forcing termx(t). g characterizes the strength of the unid
rectional coupling. Now we discuss the conditional entro
of time seriesz and z8. Make the partition plane for the
Rössler systemzc50.05. Because the shape of the Lore
attractor will change when generalized synchronization
implemented, we make a different partition plane for diffe
entg in the Lorenz system. Figure 1 shows the phase por
of the Lorenz system after transients die away wheng510.
Obviously, the two leaves of the Lorenz attractor beco
one. Figure 2 shows the results of conditional entropy a
transients die out. From Fig. 2 one can see that there
sharp minimum wheng54.9 andg510, which correspond
to generalized synchronization, and not wheng50 and
g53, which correspond to no generalized synchronizati
Figures 2~a! and 2~b! just give some oscillation. The differ
ent oscillatory amplitudes betweenn0.0 andn0,0 come
from the different oscillatory frequency between the Ro¨ssler
and Lorenz systems. On the other hand, with the increa
of parameter g, the amplitudes of conditional entrop
E(zuz8) decrease. So we can say that the appearance o
sharp minimum represents the existence of generalized
chronization. To confirm this, we have computed the larg
conditional Lyapunov exponent of the response system, c
ditioned on the drivex(t). Figure 3 shows the result. From
Fig. 3 one can see that the cases ofg54.9 and 10 are located
in the regime where the largest conditional Lyapunov ex
nents are negative, but the cases ofg53 and 0 are located in
the regime where the largest conditional Lyapunov ex
nents are positive. For other coupling strengthg, our numeri-
cal simulation gives similar results. So the case where th
is a sharp minimum of conditional entropy corresponds
that where the largest conditional Lyapunov exponent of
response system is negative.

Second, we consider a simple example of phase sync
nization, that is, two Lorenz systems with the parameters
one system in the chaotic regime (r 1528,b158/3,s1510)
and for the other in the periodic regime (r 25270,b258/3,
s2510). Following Ref.@5#, at each time step the syste
( i 51,2) is first integrated one time step via the flow equ
tions. Then they interact with each other as follows:

FIG. 3. The largest conditional Lyapunov exponent of the
sponse system versus the coupling strengthg.
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0.94x110.06x2°x1 , 0.24x110.76x2°x2 . ~7!

Letting time stepDt51024 and taking two time seriesz1
andz2, one can get the conditional entropyE(z1uz2). Figure
4 shows the result of the conditional entropy as a function
a shift parametern0. Obviously, it has a sharp minimum. S
it is consistent with Ref.@5#. Comparing Fig. 4 with Fig. 2
one can see that the minimum in Fig. 4 is sharper than tha
Fig. 2. That is because Fig. 4 represents the generalized
chronization of the same dynamics but Fig. 2 represents
of different dynamics. If we discuss the complete synchro
zation of Ref.@1#, we will find that the sharp minimum be
comes zero.

We have also studied the effect of external noise. W
consider the Gaussian white noisej having zero mean and
standard deviation equal to one, generated by using the B
Müller method@11#, and introduce noise in the form

x85x8~1.01rj!, ~8!

wherer denotes the intensity of external noise. This noise
applied at each integral step. Figure 5 shows the result
responding to Fig. 2~d!. From Fig. 5 one can see that th

- FIG. 4. The conditional entropy of phase synchronization in
Lorenz system whereDt51024.

FIG. 5. The effect of noise corresponding to Fig. 2~d!. The
intensity of noise is 1.031023.
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sharp minimum still exists. So this symbolic analysis meth
is useful in the case of weak noise.

In conclusion, we have demonstrated the possibility
illustrating generalized synchronization by symbolic ana
sis. Generalized synchronization can be implemented w
the sharp minimum of the conditional entropy as a funct
of a shift parametern0 exists. It is a convenient method o
I.
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testing whether there is generalized synchronization betw
different systems.
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