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Symbolic analysis of generalized synchronization of chaos
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An approach that uses symbolic analysis is presented for testing generalized synchronization. Generalized
synchronization appears when conditional entropy has a sharp minimum. In order to demonstrate how this
method works we applied it to the cases ofsRler and Lorenz systems. Our results appear to be robust when
external noise is addefiS1063-651X%97)10811-X]

PACS numbgs): 05.45:+b, 03.20++i, 05.40:+j, 46.10:+z

Cooperation behavior of chaotic dynamical systems and, Xi(n)=xi(to+n7), yj(n)=y(te+n7). 2
in particular, synchronization phenomena have received
much attention recently. It would seem to play an importantyere x; denotes théth variable of vectox and yj the jth
role in the ability of complex nonlinear oscillators, such asygriable of vectoly, n=0,1,2 . ... In thecomputations be-
neurons, to act cooperatively in the performance of variousow we chooser=1. In order to find the relation between
functions. Nevertheless, the notion of synchronization itseltjme seriesx;(n) andy;(n) in complex dynamical process,
lacks a unique interpretatide]. Generally, synchronization e need to use some coarse representation. That is, one has
of chaos is understood as a regime in which two coupledq supstitute actual signalg(n),y;(n) with their symbolic
chaotic systems exhibit identical, but still chaotic, OSC'”a‘representation. Recently, R¢f/] gave a symbolic analysis
tions[1]. Recently, the concept of synchromza}uon has beerbf different chaotic signals in a same system, for example,
extgnded to two cases. One is pa}lled generalized synchrone time records ok(t) andz(t) generated by the Lorenz
zation of chao$2,3] where the driving and response systemsmodel. However, the approach of locating the critical points
are different. It equates dynamical variables from one subj, Ref. [7] is very complex. In this paper, we will give a
system with a function of the variables of another subsystemjmple approach to determine the critical point. And our re-
and exists in directionally coupled chaotic systems. Thesyts show that it is useful in explaining generalized synchro-
other is called phase synchronizatiph-6] where the sys- nization.
tems flow s'ynchronlzmg'ln the phase but Wllth dilfferent SIZeS  |n studing the symbolic dynamics of systems described by
and/or positions. There is a both-way coupling in phase syngitferential equations, we have given a useful metf@pto
chronization. In this paper, we call these two cases generajjetermine the Poincasection. Its idea is as follows. Testing
ized synchronization. Using the method of symbolic analythe phase portrait of the chaotic attractor, one can find a

sis, we show that the conditional entropy has a sharpjane where all the interesting trajectories intersect it. This
minimum with the shift of time parameter, when the gen-

eralized synchronization is implemented. It means that we do 45

not need to determine a complicated generalized synchroni-

zation relationship and the appearance of the sharp minimum

can be used as a criterion of generalized synchronization.

The advantages of our method are that it does not require an

auxiliary system[3] and it works well in all kinds of syn- .

chronization. N 44 -
Consider two systems

x=f(x,ay), y=9(y,Bx), (1)
wherex andy denote two systems, respectively, amdnd 43 I
B represent the coupling interaction. If there are some rela- 13 17 21
tions between functionals of two processes due to interac- y’

tion, we say that there is a generalized synchronization be-
tween the two systems of Ell). Take two time series from FIG. 1. Phase portrait of Lorenz system when the coupling
Eq. (2), strengthg=10.
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FIG. 2. The conditional entropf(z|z’) wherez,=0.05.(a) g=0, z.,=45.0; (b) g=3, z.,=45.0; (c) g=4.9, z.,=44.6; (d) g=10,
2o =44.3.

plane usually contains an unstable fixed point. Taking this 1 1
plane as Poincarsection, the points on the plane will dem- E(y[x)=- WZ E; Py (n+ng)|lx(n))
. . ) 1 LT
onstrate some behavior of the cubic map. Hence the sym
bolic dynamics can be set up according to the map. Here we XInP(l,(n+ No)|1x(Nn)), 4

use this plane as a partition plane and give some sy@tol

represent the time series of £@). We find that this partiton  whereP(l,|l,) is a conditional probability for the variabig
plane will let the entropy of the system approach maximumto occupy staté, while the variablex; occupies staté,, N,
The value ofS; is one when the time series of E() is  is the total number of differerit, sequences; the first sum-
above the partition plane and zero when below the partitiomation in Eq.(4) is done over all dynamically accessible
plane. The resulting long symbolic series we partition intostates and fixedl, states.

short sequences of a given lendth(L=5 in the example As an application, we first consider two different systems.
below), and identify every short sequence uniquely by justThe drive system is the Reler model,

one integef9,10]

L _ x()=—[y(H+z(t)], yt)=x(t)+0.2y(1),
|=_§‘,1 2t-1s. 3)

=

z(t)=0.2+z(t)[x(t) —u], (5)

The sequencdscan be used for symbolic coarse graining of
the phase space of the dynamical system. Now we represe@d the response system is the Lorenz model,
the time series;(n) andy;(n) as symbolic statek(n) and
[,(n). If there is no relation betweex(n) andy;(n), the Dr ey O8Ny ATy ()
eyvolution ofl,(n) andl(n) states is not correla’éed. On the XD =0y’ (=X (O]~ glx" (O =x(v)],
other hand, if there is generalized synchronization between
xi(n) andy;(n), we will observe some relationship between Y/ (1)=—x'(1)Z' (1) +rx' () —y' (1),
Ix(n) andl,(n). We can easily destroy such a correlation by
time shifting: 1,(n),ly,(n+ng). To confirm this effect we )
compute the conditional entrofpy] Z'(H)=x"(t)y'(t)—bZ (1), (6)
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FIG. 3. The largest conditional Lyapunov exponent of the re- FIG. 4. The conditional entropy of phase synchronization in the
sponse system versus the coupling strergth Lorenz system wherdt=10"4.
where u=5.7, 0=16, b=4, andr=45.92. The response 0.94;+0.08¢—=>X%y,  0.24;+0.76¢—>x%,.  (7)

system is coupled to the drive system only through the scalar

forcing termx(t). g characterizes the strength of the unidi- Letting time stepAt=10"* and taking two time serieg;
rectional coupling. Now we discuss the conditional entropyandz,, one can get the conditional entrofyz,|z,). Figure

of time seriesz and z’. Make the partition plane for the 4 shows the result of the conditional entropy as a function of
Rssler systenz,=0.05. Because the shape of the Lorenz2 Shift parameten,. Obviously, it has a sharp minimum. So
attractor will change when generalized synchronization idt IS consistent with Ref|5]. Comparing Fig. 4 with Fig. 2
implemented, we make a different partition plane for differ-ON€ can see that the minimum in Fig. 4 is sharper than that in

entg in the Lorenz system. Figure 1 shows the phase portrafig' 2. That is because Fig. 4 represents the generalized syn-
of the Lorenz system after transients die away whenlO.

chronization of the same dynamics but Fig. 2 represents that
Obviously, the two leaves of the Lorenz attractor becomeOf Qifferent dynamics. If_ we discuss the comple_te_ synchroni-
one. Figure 2 shows the results of conditional entropy afteFamon of Ref.[1], we will find that the sharp minimum be-
transients die out. From Fig. 2 one can see that there is gomes zero. . .

sharp minimum whemg=4.9 andg= 10, which correspond We have also St.Ud'ed Fhe effect O.f external noise. We
to generalized synchronization, and not whem0 and consider the Gaussian white noigehaving zero mean and

g=3, which correspond to no generalized Synchronizationstandard deviation equal to one, generated by using the Box-

Figures 2Za) and Zb) just give some oscillation. The differ- Muller method[11], and introduce noise in the form

ent oscillatory amplitudes betweery>0 andny<0 come

from the different oscillatory frequency between thesRler X' =x'(1.0+ p&), (8
and Lorenz systems. On the other hand, with the increasing
of parameterg, the amplitudes of conditional entropy

E(zl2') decr So w n that th ran f,[wherep denotes the intensity of external noise. This noise is
(zlz') decrease. So we can say that the appearance o r<];1‘f)plied at each integral step. Figure 5 shows the result cor-
sharp minimum represents the existence of generalized sy

chronization. To confirm this, we have computed the Iarges?eSpondIng to Fig. @). From Fig. 5 one can see that the

conditional Lyapunov exponent of the response system, con-

ditioned on the drivex(t). Figure 3 shows the result. From 0.26
Fig. 3 one can see that the casegef4.9 and 10 are located

in the regime where the largest conditional Lyapunov expo-

nents are negative, but the casegef3 and 0 are located in

the regime where the largest conditional Lyapunov expo- —~

nents are positive. For other coupling strengttour numeri- N 0.18
cal simulation gives similar results. So the case where there N )

is a sharp minimum of conditional entropy corresponds to L

that where the largest conditional Lyapunov exponent of the

response system is negative.

Second, we consider a simple example of phase synchro- 0.1
nization, that is, two Lorenz systems with the parameters for .
one system in the chaotic regime; &£28b;=8/3,0,=10) -50 0 50
and for the other in the periodic regime,&270pb,=_8/3, Ng

o,=10). Following Ref.[5], at each time step the system

(i=1,2) is first integrated one time step via the flow equa- FIG. 5. The effect of noise corresponding to Figd)2 The
tions. Then they interact with each other as follows: intensity of noise is 1.810°3,
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sharp minimum still exists. So this symbolic analysis methodesting whether there is generalized synchronization between
is useful in the case of weak noise. different systems.

In conclusion, we have demonstrated the possibility of
illustrating generalized synchronization by symbolic analy-
sis. Generalized synchronization can be implemented when This work was supported partially by the National Natural
the sharp minimum of the conditional entropy as a functionScience Foundation of China and Science Foundation of
of a shift parameten, exists. It is a convenient method of China Academy of Engineering Physics.
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